Selasa, 10 Mei 2011

Pembuatan Aldehid dan Keton

Halaman ini menjelaskan cara pembuatan aldehid dan keton dalam laboratorium melalui oksidasi alkohol primer dan sekunder.
Oksidasi alkohol untuk membuat aldehid dan keton
Secara umum
Agen pengoksidasi yang digunakan dalam reaksi-reaksi ini biasanya adalah sebuah larutan natrium dikromat(VI) atau kalium dikromat (VI) yang diasamkan dengan asam sulfat encer. Jika oksidasi terjadi, larutan oranye yang mengandung ion-ion dikromat(VI) direduksi menjadi sebuah larutan berwarna hijau yang mengandung ion-ion kromium(III).
Efek murni yang ditimbulkan adalah bahwa sebuah atom oksigen dari agen pengoksidasi melepaskan satu atom hidrogen dari gugus -OH pada alkohol dan satu lagi hidrogen dari karbon dimana gugus -OH tersebut terikat.
Penulisan [O] sering digunakan untuk mewakili atom oksigen yang berasal dari sebuah agen pengoksidasi.
R dan R’ adalah gugus-gugus alkil atau hidrogen. Keduanya juga bisa berupa gugus-gugus yang mengandung sebuah cincin benzen, tapi disini kita tidak akan membahas cincin benzen untuk menyederhanakan pembahasan.
Jika sekurang-kurangnya satu dari gugus ini adalah atom hidrogen, maka diperoleh aldehid. Jika keduanya adalah gugus alkil maka diperoleh keton.
Jika ditinjau dari molekul baku yang dioksidasi, maka akan diperoleh sebuah aldehid jika bahan baku yang digunakan memiliki rumus struktur seperti berikut:
Dengan kata lain, jika digunaka alkohol primer sebagai bahan baku, maka akan diperoleh aldehid.
Keton akan diperoleh jika molekul baku yang digunakan memiliki rumus struktur seperti berikut:
dimana R dab R’ keduanya adalah gugus alkil.
Alkohol sekunder dioksidasi menghasilkan keton.
Pembuatan aldehid
Aldehid dibuat dengan cara mengoksidasi alkohol primer, akan tetapi, ada sedikit masalah pada oksidasi ini.
Aldehid yang dihasilkan bisa dioksidasi lebih lanjut menjadi sebuah asam karboksilat oleh larutan kalium dikromat(VI) asam yang digunakan sebagai agen pengoksidasi. Untuk menghentikan reaksi ketika aldehid telah terbentuk, maka reaksi dengan larutan kalium dikromat(VI) harus dicegah terjadi.
Untuk menghentikan oksidasi setelah aldehid terbentuk, ikuti petunjuk berikut:
  • gunakan alkohol yang berlebih. Ini berarti bahwa tidak ada agen pengoksidasi yang cukup untuk melakukan tahap kedua dan mengoksidasi aldehid yang terbentuk menjadi sebuah asam karboksilat.
  • pisahkan aldehid dengan distilasi segera setelah terbentuk. Pemisahan aldehid segera setelah terbentuk berarti bahwa aldehid tidak tinggal dalam campuran untuk dioksidasi lebih lanjut.
Jika yang digunakan sebagai alkohol primer adalah etanol, maka akan dihasilkan aldehid etanal, CH3CHO.
Persamaan lengkap untuk reaksi ini cukup rumit, dan anda perlu memahami tentang persamaan setengah-reaksi untuk bisa menuliskannya.

Dalam kimia organik, versi sederhana dari reaksi ini sering digunakan dengan fokus utama terhadap apa yang terjadi pada zat-zat organik. Untuk menyederhanakan reaksi ini, oksigen dari sebuah agen pengoksidasi dituliskan sebagai [O]. Dengan penulisan ini, persamaan reaksinya menjadi lebih sederhana:

Alkohol sekunder
Alkohol sekunder dioksidasi menjadi keton. Tidak ada reaksi lebih lanjut yang terjadi seperti pada oksidasi alkohol primer. Sebagai contoh, jika anda memanaskan alkohol sekunder propan-2-ol dengan natrium dikromat(VI) atau kalium dikromat(VI), maka akan terbentuk propanon.
Mengubah-ubah kondisi reaksi tidak akan merubah produk yang terbentuk.
Dengan menggunakan persamaan versi sederhana, reaksinya bisa dituliskan sebagai berikut:

Pembuatan Ester

Ditulis oleh Jim Clark pada 07-11-2007
Halaman ini membahas tentang cara-cara pembuatan ester dalam laboratorium dari alkohol dan fenol menggunakan asam karboksilat, asil klorida (klorida asam) atau anhidrida asam yang sesuai.

Pembuatan ester menggunakan asam karboksilat

Metode ini bisa digunakan untuk mengubah alkohol menjadi ester, tetapi metode ini tidak berlaku bagi fenol – senyawa dimana gugus -OH terikat langsung pada sebuah cincin benzen. Fenol bereaksi dengan asam karboksilat dengan sangat lambat sehingga reaksi tidak bisa digunakan untuk tujuan pembuatan.
Sifat kimiawi reaksi
Ester dihasilkan apabila asam karboksilat dipanaskan bersama alkohol dengan bantuan katalis asam. Katalis ini biasanya asam sulfat pekat. Gas hidrogen klorida kering terkadang digunakan, tetapi penggunaannya cenderung melibatkan ester-ester aromatik (ester dimana asam karboksilat mengandung sebuah cincin benzen).Reaksi pengesteran (esterifikasi) berjalan lambat dan dapat balik (reversibel). Persamaan untuk reaksi antara asam RCOOH dengan alkohol R’OH (dimana R dan R’ bisa sama atau berbda) adalah sebagai berikut:

Jadi, misalnya, jika anda membuat etil etanoat dari asam etanoat dan etanol, maka persamaan reaksinya akan menjadi:

Melangsungkan reaksi
Dalam skala tabung uji
Asam karboksilat dan alkohol sering dipanaskan bersama disertai dengan beberapa tetes asam sulfat pekat untuk mengamati bau ester yang terbentuk.
Untuk melangsungkan reaksi dalam skala tabung uji, semua zat (asam karboksilat, alkohol dan asam sulfat pekat) yang dalam jumlah kecil dipanaskan di sebuah tabung uji yang berada di atas sebuah penangas air panas selama beberapa menit.
Karena reaksi berlangsung lambat dan dapat balik (reversibel), ester yang terbentuk tidak banyak. Bau khas ester seringkali tertutupi atau terganggu oleh bau asam karboksilat. Sebuah cara sederhana untuk mendeteksi bau ester adalah dengan menaburkan campuran reaksi ke dalam sejumlah air di sebuah gelas kimia kecil.
Terkecuali ester-ester yang sangat kecil, semua ester cukup tidak larut dalam air dan cenderung membentuk sebuah lapisan tipis pada permukaan. Asam dan alkohol yang berlebih akan larut dan terpisah di bawah lapisan ester.
Ester-ester kecil seperti pelarut-pelarut organik sederhana memiliki bau yang mirip dengan pelarut-pelarut organik (etil etanoat merupakan sebuah pelarut yang umum misalnya pada lem).
Semakin besar ester, maka aromanya cenderung lebih ke arah perasa buah buatan – misalnya “buah pir”.
Dalam skala yang lebih besar
Jika anda ingin membuat sampel sebuah ester yang cukup besar, maka metode yang digunakan tergantung pada (sampai tingkatan tertentu) besarnya ester. Ester-ester kecil terbentuk lebih cepat dibanding ester yang lebih besar.
Untuk membuat sebuah ester kecil seperti etil etanoat, anda bisa memanaskan secara perlahan sebuah campuran antara asam metanoat dan etanol dengan bantuan katalis asam sulfat pekat, dan memisahkan ester melalui distilasi sesaat setelah terbentuk.
Ini dapat mencegah terjadinya reaksi balik. Pemisahan dengan distilasi ini dapat dilakukan dengan baik karena ester memiliki titik didih yang paling rendah diantara semua zat yang ada. Ester merupakan satu-satunya zat dalam campuran yang tidak membentuk ikatan hidrogen, sehingga memiliki gaya antar-molekul yang paling lemah.
Ester-ester yang lebih besar cenderung terbentuk lebih lambat. Dalam hal ini, mungkin diperlukan untuk memanaskan campuran reaksi di bawah refluks selama beberapa waktu untuk menghasilkan sebuah campuran kesetimbangan. Ester bisa dipisahkan dari asam karboksilat, alkohol, air dan asam sulfat dalam campuran dengan metode distilasi fraksional.

Pembuatan ester menggunakan asil klorida (klorida asam)

Metode ini hanya berlaku bagi alkohol dan fenol. Untuk fenol, reaksi terkadang dapat ditingkatkan dengan pertama-tama mengubah fenol menjadi bentuk yang lebih reaktif.
Reaksi dasar
Jika kita menambahkan sebuah asil klorida kedalam sebuah alkohol, maka reaksi yang terjadi cukup progresif (bahkan berlangsung hebat) pada suhu kamar menghasilkan sebuah ester dan awan-awan dari asap hidrogen klorida yang asam dan beruap.
Sebagai contoh, jika kita menambahkan etanol krlorida ke dalam etanol, maka akan terbentuk banyak hidrogen klorida bersama dengan ester cair etil etanoat.

Zat yang biasanya disebut "fenol" adalah zat yang paling sederhana dari golongan fenol. Fenol memiliki sebuah gugus -OH terikat pada sebuah cincin benzen – dan tidak ada lagi selain itu.
Reaksi antara etanoil klorida dengan fenol mirip dengan reaksi etanol walaupun tidak begitu progresif. Fenil etanoat terbentuk bersama dengan gas hidrogen klorida.

Mempercepat reaksi antara fenol dengan beberapa asil klorida yang kurang reaktif
Benzoil klorida memiliki rumus molekul C6H5COCl. Gugus -COCl terikat langsung pada sebuah cincin benzen. Senyawa ini jauh lebih tidak reaktif dibanding asil klorida sederhana seperti etanoil klorida.
Fenol pertama-tama diubah menjadi senyawa ionik natrium fenoksida (natrium fenat) dengan melarutkannya dalam larutan natrium hidroksida.

Ion fenoksida bereaksi lebih cepat dengan benzoil klorida dibanding fenol, tapi biarpun demikian reaksi tetap harus dikocok dengan benzoil klorida selama sekitar 15 menit. Padatan fenol benzoat terbentuk.

Pembuatan ester menggunakan anhidrida asam

Reaksi ini juga bisa digunakan untuk membuat ester baik dari alkohol maupun fenol. Reaksinya berlangsung lebih lambat dibanding reaksi sebanding yang menggunakan asil klorida, dan campuran reaksi biasanya perlu dipanaskan.
Untuk fenol, kita bisa mereaksikan fenol dengan larutan natrium hidroksida pertama kali, yang menghasilkan ion fenoksida yang lebih reaktif.
Mari kita mengambil contoh etanol yang bereaksi dengan etanoat anhidrida sebagai sebuah reaksi sederhana yang melibatkan sebuah alkohol:
Reaksi yang berlangsung pada suhu kamar cukup lambat (atau lebih cepat jika dipanaskan). Tidak ada perubahan yang dapat diamati pada cairan tidak berwarna , tetapi sebuah campuran antara etil etanoat dengan asam etanoat terbentuk.
Reaksi dengan fenol kurang lebih sama, tetapi lebih lambat. Fenil etanoat terbentuk bersama dengan asam etanoat.
Reaksi ini tidak terlalu penting, tapi ada reaksi yang sangat mirip terlibat dalam pembuatan aspirin (dibahas secara rinci pada halaman lain).
Jika fenol pertama-tama diubah menjadi natrium fenoksida dengan menambahkan larutan natrium hidroksida, maka reaksinya berlangsung lebih cepat. Fenil etanoat lagi-lagi terbentuk, tapi kali ini produk lainnya adalah natrium etanoat bukan asam etanoat.

Mengenal Aldehid dan Keton

Ditulis oleh Jim Clark pada 02-11-2007
Halaman ini menjelaskan tentang pengertian aldehid dan keton, dan membahas sekilas tentang bagaimana ikatan aldehid dan keton berpengaruh terhadap kereaktifannya. Halaman ini juga meninjau sifat-sifat fisik sederhana seperti kelarutan dan titik didih. Rincian tentang reaksi kimia aldehid dan keton dibahas pada halaman yang lain.

Pengertian aldehid dan keton
Aldehid dan keton sebagai senyawa karbonil
Aldehid dan keton adalah senyawa-senyawa sederhana yang mengandung sebuah gugus karbonil – sebuah ikatan rangkap C=O. Aldehid dan keton termasuk senyawa yang sederhana jika ditinjau berdasarkan tidak adanya gugus-gugus reaktif yang lain seperti -OH atau -Cl yang terikat langsung pada atom karbon di gugus karbonil – seperti yang bisa ditemukan misalnya pada asam-asam karboksilat yang mengandung gugus -COOH.
Contoh-contoh aldehid
Pada aldehid, gugus karbonil memiliki satu atom hidrogen yang terikat padanya bersama dengan salah satu dari gugus berikut:
  • atom hidrogen lain
  • atau, yang lebih umum, sebuah gugus hidrokarbon yang bisa berupa gugus alkil atau gugus yang mengandung sebuah cincin benzen.
Pada pembahasan kali ini, kita tidak akan menyinggung tentang aldehid yang mengandung cincin benzen.
Pada gambar di atas kita bisa melihat bahwa keduanya memiliki ujung molekul yang sama persis. Yang membedakan hanya kompleksitas gugus lain yang terikat.
Jika kita menuliskan rumus molekul untuk molekul-molekul di atas, maka gugus aldehid (gugus karbonil yang mengikat atom hidrogen) selalunya dituliskan sebagai -CHO – dan tidak pernah dituliskan sebagai COH. Oleh karena itu, penulisan rumus molekul aldehid terkadang sulit dibedakan dengan alkohol. Misalnya etanal dituliskan sebagai CH3CHO dan metanal sebagai HCHO.
Penamaan aldehid didasarkan pada jumlah total atom karbon yang terdapat dalam rantai terpanjang – termasuk atom karbon yang terdapat pada gugus karbonil. Jika ada gugus samping yang terikat pada rantai terpanjang tersebut, maka atom karbon pada gugus karbonil harus selalu dianggap sebagai atom karbon nomor 1.
Contoh-contoh keton
Pada keton, gugus karbonil memiliki dua gugus hidrokarbon yang terikat padanya. Sekali lagi, gugus tersebut bisa berupa gugus alkil atau gugus yang mengandung cincin benzen. Disini kita hanya akan berfokus pada keton yang mengandung gugus alkil untuk menyederhanakan pembahasan.
Perlu diperhatikan bahwa pada keton tidak pernah ada atom hidrogen yang terikat pada gugus karbonil.
Propanon biasanya dituliskan sebagai CH3COCH3. Diperlukannya penomoran atom karbon pada keton-keton yang lebih panjang harus selalu diperhatikan. Pada pentanon, gugus karbonil bisa terletak di tengah rantai atau di samping karbon ujung – menghasilkan pentan-3-ena atau pentan-2-on.
Ikatan dan Kereaktifan
Ikatan pada gugus karbonil
Atom oksigen jauh lebih elektronegatif dibanding karbon sehingga memiliki kecenderungan kuat untuk menarik elektron-elektron yang terdapat dalam ikatan C=O kearahnya sendiri. Salah satu dari dua pasang elektron yang membentuk ikatan rangkap C=O bahkan lebih mudah tertarik ke arah oksigen. Ini menyebabkan ikatan rangkap C=O sangat polar.
Reaksi-reaksi penting dari gugus karbonil
Atom karbon yang sedikit bermuatan positif pada gugus karbonil bisa diserang oleh nukleofil. Nukleofil merupakan sebuah ion bermuatan negatif (misalnya, ion sianida, CN-), atau bagian yang bermuatan negatif dari sebuah molekul (misalnya, pasangan elektron bebas pada sebuah atom nitrogen dalam molekul amonia NH3).
Selama reaksi berlangsung, ikatan rangkap C=O terputus. Efek murni dari pemutusan ikatan ini adalah bahwa gugus karbonil akan mengalami reaksi adisi, seringkali diikuti dengan hilangnya sebuah molekul air. Ini menghasilkan reaksi yang dikenal sebagai adisi-eliminasi atau kondensasi. Dalam pembahasan tentang aldehid dan keton anda akan menemukan banyak contoh reaksi adisi sederhana dan reaksi adisi-eliminasi.
Aldehid dan keton mengandung sebuah gugus karbonil. Ini berarti bahwa reaksi keduanya sangat mirip jika ditinjau berdasarkan gugus karbonilnya.
Perbedaan aldehid dan keton
Aldehid berbeda dengan keton karena memiliki sebuah atom hidrogen yang terikat pada gugus karbonilnya. Ini menyebabkan aldehid sangat mudah teroksidasi.
Sebagai contoh, etanal, CH3CHO, sangat mudah dioksiasi baik menjadi asam etanoat, CH3COOH, atau ion etanoat, CH3COO-.
Keton tidak memiliki atom hidrogen tersebut sehingga tidak mudah dioksidasi. Keton hanya bisa dioksidasi dengan menggunakan agen pengoksidasi kuat yang memiliki kemampuan untuk memutus ikatan karbon-karbon.
Oksidasi aldehid dan keton juga dibahas dalam modul belajar online ini pada sebuah halaman khusus di topik aldehid dan keton.
Sifat-sifat fisik
Titik didih
Aldehid sederhana seperti metanal memiliki wujud gas (titik didih -21°C), dan etanal memiliki titik didih +21°C. Ini berarti bahwa etanal akan mendidih pada suhu yang mendekati suhu kamar.
Aladehid dan keton lainnya berwujud cair, dengan titik didih yang semakin meningkat apabila molekul semakin besar.
Besarnya titik didih dikendalikan oleh kekuatan gaya-gaya antar-molekul.
Gaya dispersi van der Waals
Gaya tarik ini menjadi lebih kuat apabila molekul menjadi lebih panjang dan memiliki lebih banyak elektron. Peningkatan gaya tarik ini akan meningkatkan ukuran dipol-dipol temporer yang terbentuk. Inilah sebabnya mengapa titik didih meningkat apabila jumlah atom karbon dalam rantai juga meningkat – baik pada aldehid maupun pada keton.
Gaya tarik dipol-dipol van der Waals
Aldehid dan keton adalah molekul polar karena adanya ikatan rangkap C=O. Seperti halnya gaya-gaya dispersi, juga akan ada gaya tarik antara dipol-dipol permanen pada molekul-molekul yang berdekatan.
Ini berarti bahwa titik didih akan menjadi lebih tinggi dibanding titik didih hidrokarbon yang berukuran sama – yang mana hanya memiliki gaya dispersi.
Mari kita membandingkan titik didih dari tiga senyawa hidrokarbon yang memiliki besar molekul yang mirip. Ketiga senyawa ini memiliki panjang rantai yang sama, dan jumlah elektronnya juga mirip (walaupun tidak identik).

molekultipetitik didih (°C)
CH3CH2CH3alkana-42
CH3CHOaldehid+21
CH3CH2OHalkohol+78
Pada tabel di atas kita bisa melihat bahwa aldehid (yang memiliki gaya tarik dipol-dipol dan gaya tarik dispersi) memiliki titik didih yang lebih tinggi dari alkana berukuran sebanding yang hanya memiliki gaya dispersi.
Akan tetapi, titik didih aldehid lebih rendah dari titik didih alkohol. Pada alkohol, terdapat ikatan hidrogen ditambah dengan dua jenis gaya-tarik antar molekul lainnya (gaya-tarik dipol-dipol dan gaya-tarik dispersi).
Walaupun aldehid dan keton merupakan molekul yang sangat polar, namun keduanya tidak memiliki atom hidrogen yang terikat langsung pada oksigen, sehingga tidak bisa membentuk ikatan hidrogen sesamanya.
Kelarutan dalam air
Aldehid dan keton yang kecil dapat larut secara bebas dalam air tetapi kelarutannya berkurang seiring dengan pertambahan panjang rantai. Sebagai contoh, metanal, etanal dan propanon – yang merupakan aldehid dan keton berukuran kecil – dapat bercampur dengan air pada semua perbandingan volume.
Alasan mengapa aldehid dan keton yang kecil dapat larut dalam air adalah bahwa walaupun aldehid dan keton tidak bisa saling berikatan hidrogen sesamanya, namun keduanya bisa berikatan hidrogen dengan molekul air.
Salah satu dari atom hidrogen yang sedikit bermuatan positif dalam sebuah molekul air bisa tertarik dengan baik ke salah satu pasangan elektron bebas pada atom oksigen dari sebuah aldehid atau keton untuk membentuk sebuah ikatan hidrogen.
Tentunya juga terdapat gaya dispersi dan gaya tarik dipol-dipol antara aldehid atau keton dengan molekul air.
Pembentukan gaya-gaya tarik ini melepaskan energi yang membantu menyuplai energi yang diperlukan untuk memisahkan molekul air dan aldehid atau keton satu sama lain sebelum bisa bercampur.
Apabila panjang rantai meningkat, maka "ekor-ekor" hidrokarbon dari molekul-molekul (semua hidrokarbon sedikit menjauh dari gugus karbonil) mulai mengalami proses di atas.
Dengan menekan diri diantara molekul-molekul air, ekor-ekor hidrokarbon tersebut memutus ikatan hidrogen yang relatif kuat antara molekul-molekul air tanpa menggantinya dengan ikatan yang serupa. Ini menjadi proses yang tidak bermanfaat dari segi energi, sehingga kelarutan berkurang.

Kegunaan Alkohol

Ditulis oleh Jim Clark pada 28-10-2007
Halaman ini menjelaskan secara singkat tentang beberapa kegunaan yang lebih penting dari beberapa alkohol sederhana seperti metanol, etanol dan propan-2-ol.

Kegunaan etanol
Minuman
"Alkohol" yang terdapat dalam minuman beralkohol adalah etanol.
Spirit (minuman keras) bermetil yang diproduksi dalam skala industri
Etanol biasanya dijual sebagai spirit (minuman keras) bermetil yang diproduksi dalam skala industri yang sebenarnya merupakan sebuah etanol yang telah ditambahkan sedikit metanol dan kemungkinan beberapa zat warna. Metanol beracun, sehingga spirit bermetil dalam skala industri tidak cocok untuk diminum. Penjualan dalam bentuk spirit dapat menghindari pajak tinggi yang dikenakan untuk minuman beralkohol (khususnya di Inggris).
Sebagai bahan bakar
Etanol dapat dibakar untuk menghasilkan karbon dioksida dan air serta bisa digunakan sebagai bahan bakar baik sendiri maupun dicampur dengan petrol (bensin). "Gasohol" adalah sebuah petrol / campuran etanol yang mengandung sekitar 10 – 20% etanol.
Karena etanol bisa dihasilkan melalui fermentasi, maka alkohol bisa menjadi sebuah cara yang bermanfaat bagi negara-negara yang tidak memiliki industri minyak untuk mengurangi import petrol mereka.

Sebagai pelarut
Etanol banyak digunakan sebagai sebuah pelarut. Etanol relatif aman, dan bisa digunakan untuk melarutkan berbagai senyawa organik yang tidak dapat larut dalam air. Sebagai contoh, etanol digunakan pada berbagai parfum dan kosmetik.
Kegunaan metanol
Sebagai bahan bakar
Metanol jika dibakar akan menghasilkan karbon dioksida dan air.

Metanol bisa digunakan sebagai sebuah aditif petrol untuk meningkatkan pembakaran, atau kegunaannya sebagai sebuah bahan bakar independen (sekarang sementara diteliti).
Sebagai sebuah stok industri
Kebanyakan metanol digunakan untuk membuat senyawa-senyawa lain – seperti metanal (formaldehida), asam etanoat, dan metil ester dari berbagai asam. Kebanyakan dari senyawa-senyawa selanjutnya diubah menjadi produk.
Kegunaan propan-2-ol
Propan-2-ol banyak digunakan pada berbagai situasi yang berbeda sebagai sebuah pelarut

KETON

Keton bisa berarti gugus fungsi yang dikarakterisasikan oleh sebuah gugus karbonil (O=C) yang terhubung dengan dua atom karbon ataupun senyawa kimia yang mengandung gugus karbonil. Keton memiliki rumus umum:
R1(CO)R2.
Senyawa karbonil yang berikatan dengan dua karbon membedakan keton dari asam karboksilat, aldehida, ester, amida, dan senyawa-senyawa beroksigen lainnya. Ikatan ganda gugus karbonil membedakan keton dari alkohol dan eter. Keton yang paling sederhana adalah aseton (secara sistematis dinamakan 2-propanon).
Atom karbon yang berada di samping gugus karbonil dinamakan karbon-α. Hidrogen yang melekat pada karbon ini dinamakan hidrogen-α. Dengan keberadaan asam katalis, keton mengalami tautomerisme keto-enol. Reaksi dengan basa kuat menghasilkan enolat.

Tatanama

Asetone, keton paling sederhana
Secara umum, keton dinamakan dengan tatanama IUPAC dengan menggantikan sufiks -a pada alkana induk dengan -on. Untuk keton yang umumnya dijumpai, nama-nama tradisional digunakan, seperti pada aseton dan benzofenon, nama-nama ini dianggap sebagai nama IUPAC yang dipertahankan [1] walaupun beberapa buku kimia menggunakan nama propanon.
Okso adalah tatanama IUPAC resmi untuk gugus fungsi keton. Namun prefiks lainnya juga digunakan dalam berbeagai buku dan jurnal. Untuk senyawa-senyawa yang umum (terutama pada biokimia), keto atau okso adalah istilah yang digunakan untuk menjelaskan gugus fungsi keton (juga dikenal dengan nama alkanon). Okso juga merujuk pada atom okesigen tunggal yang berkoordinasi dengan logam transisi (okso logam).

Sifat-sifat fisika

Gugus karbonil bersifat polar, sehingga mengakibatkan senyawa keton polar. Gugus karbonil akan berinteraksi dengan air melalui ikatan hidrogen, sehingga keton larut dalam air. Ia merupakan akseptor ikatan hidrogen, dan bukannya donor, sehingga ia tidak akan membentuk ikatan hidrogen dengan dirinya sendiri. Hal ini membuat keton lebih mudah menguap daripada alkohol dan asam karboksilat.

Keasaman

Hidrogen-α keton lebih asam (pKa ≈ 20) daripada hidrogen alkana biasa (pKa ≈ 50). Hal ini disebabkan oleh stabilisasi resonansi ion enolat yang terbentuk ketika berdisosiasi. Keasaman relatif hidrogen-α sangatlah penting dalam reaksi enolisasi keton dan senyawa karbonil lainnya.

Sifat-sifat spektroskopi

Spektroskopi adalah salah satu cara yang penting untuk mengidentifikasi keton. Keton dan aldehida akan menunjuukkan puncak yang signifikan pada spektroskopi inframerah di sekitar 1700 cm−1 (agak tinggi atau rendah, bergantung pada lingkungan kimiawi)

Sintesis

Terdapat beberapa metode untuk pembuatan keton dalam laboratorium:
H3C-CH(OH)-CH3 → H3C-CO-CH3
Dua atom hidrogen dilepas, menjadikan atom oksigen berikatan ganda dengan atom karbon.

Reaksi

Keton terlibat dalam berbagai macam reaksi organik:

Aplikasi

Keton sering digunakan pada parfum dan cat untuk menstabilisasi ramuan lainnya sehingga tidak berdegradasi dengan cepat. Kegunaan lainnya adalah sebagai pelarut dan zat antara dalam industri kimia.


Halogenalkana (Haloalkana atau Alkil Halida)

Ditulis oleh Jim Clark pada 21-10-2007
Halaman ini menjelaskan beberapa kegunaan halogenalkana (haloalkana atau alkil halida)

CFC dan zat-zat pengganti sejenis
Pengertian CFC
CFC adalah klorofluorokarbon, yaitu senyawa-senyawa yang mengandung atom karbon dengan klorin dan fluorin terikat padanya. Dua CFC yang umum adalah:

CFC-11CCl3F
CFC-12CCl2F2
Kegunaan CFC
CFC merupakan zat-zat yang tidak mudah terbakar dan tidak terlalu toksik. Dengan demikian zat ini memiliki banyak kegunaan.
CFC digunakan sebagai pendingin, bahan bakar untuk aerosol, untuk menghasilkan plastik busa seperti busa polistirena atau poliuretana yang memuai, dan sebagai pelarut untuk pembersihkeringan dan untuk tujuan-tujuan pengeringan minyak.
Sayangnya, CFC dapat merusak lapisan ozon. Pada lapisan atmosfir yang tinggi, ikatan C-Cl akan terputus menghasilkan radikal-radikal bebas klorin. Radikal-radikal inilah yang merusak ozon. CFC sekarang ini telah digantikan oleh senyawa-senyawa yang lebih ramah lingkungan.
CFC juga bisa menyebabkan pemanasan global. Satu molekul CFC-11 misalnya, memiliki potensi pemanasan global sekitar 5000 kali lebih besar ketimbang sebuah molekul karbon dioksida.
Di sisi lain, terdapat jauh lebih banyak karbon dioksida di udara ketimbang CFC, sehingga pemanasan global bukanlah sebuah masalah utama yang terkait dengan penggunaan CFC.

Zat pengganti CFC
Zat-zat yang digunakan untuk menggantikan CFC ini masih sebagian besar halogenalkana, walaupun alkana-alkana sederhana seperti butana bisa digunakan untuk beberapa tujuan (misalnya, sebagai bahan bakar aerosol).
Hidroklorofluorokarbon, HCFC
Senyawa-senyawa ini adalah senyawa-senyawa karbon yang mengandung hidrogen serta atom-atom halogen. Sebagai contoh:

HCFC-22CHClF2
Formula ini bisa ditentukan berdasarkan angka yang terdapat pada namanya persis seperti penentua formula untuk CFC.
Senyawa-senyawa ini memiliki masa aktif yang lebih singkat di atmosfir dibanding CFC, dan banyak diantaranya yang menjadi rusak pada lapisan atmosfir bawah sehingga tidak bereaksi dengan lapisan ozon. HFC-22 hanya memiliki sekitar seperdua puluh dari pengaruh CFC biasa terhadap lapisan ozon.
Hidrofluorokarbon, HFC
Senyawa-senyawa ini adalah senyawa-senyawa yang hanya mengandung hidrogen dan fluorin yang terikat pada atom karbon. Sebagai contoh:

HFC-134aCH2F-CF3
Karena HCFC tidak mengandung klorida, maka senyawa-senyawa ini tidak memiliki pengaruh terhadap lapisan ozon. HFC-134a saat ini banyak digunakan pada pendingin, untuk Because these HCFCs don’t contain any chlorine, they have zero effect on the ozone layer. HFC-134a is now widely used in refrigerants, for mengembangkan plastik yang memuai dan sebagai bahan bakar dalam aerosol.
Hidrokarbon
Senyawa-senyawa ini juga tidak memiliki pengaruh terhadap lapisan ozon, tetapi memiliki sebuah kekurangan. Senyawa-senyawa ini sangat mudah terbakar dan terlibat dalam masalah-masalah lingkungan seperti pembentukan kabut fotokimia.
Kegunaan lain dari senyawa-senyawa halogen organik
Dalam pembuatan plastik
Pada dasarnya, senyawa-senyawa yang kita bicarakan disini adalah senyawa-senyawa halogenalkena, bukan halogenalkana.
Kloroetena, CH2=CHCl, digunakan untuk membuat poli(kloroetea) – biasa disebut PVC.
Tetrafluoroetena, CF2=CF2, digunakan untuk membuat poli (tetrafluoroetena) – PTFE.
Kegunaan halogenalkana dalam laboratorium
Jika anda mencermati pembahasan-pembahasan tentang halogenalkana, maka anda akan menemukan bahwa senyawa-senyawa halogenalkana ini bereaksi dengan banyak senyawa lain menghasilkan bermacam-macam produk orgaik.
Dengan demikian, halogenalkana bermanfaat dalam laboratorium sebagai intermediet dalam pembuatan bahan-bahan kimia organik yang lain.

Reaksi Alkena dengan Hidrogen Halida

Ditulis oleh Jim Clark pada 17-10-2007
Halaman ini membahas mengenai reaksi antara ikatan karbon-karbon rangkap (C=C) pada senyawa-senyawa alkena seperti etena dengan halida-halida hidrogen seperti hidrogen klorida dan hidrogen bromida.
Alkena-alkena simetris (seperti etena atau but-2-ena) akan dibahas pertama kali. Alkena-alkena ini memiliki gugus-gugus identik yang terikat pada masing-masing ujung ikatan C=C. Untuk alkena-alkena yang tidak simetris seperti propena, reaksi yang terjadi sedikit lebih rumit, sehingga akan dibahas pada bagian terpisah selanjutnya.
Adisi pada alkena-alkena simetris
Fakta-fakta
Semua alkena mengalami reaksi adisi dengan halida-halida hidrogen. Sebuah atom hidrogen terikat pada salah satu atom karbon yang pada awalnya berikatan rangkap, dan sebuah atom halogen terikat pada atom karbon lainnya.
Sebagai contoh, dengan etena dan hidrogen klorida, akan terbentuk kloroetana:

But-2-ena dengan hidrogen klorida akan menghasilkan 2-klorobutana:

Apa yang akan terjadi jika hidrogen diadisi ke atom karbon pada ujung sebelah kanan ikatan rangkap, dan klorin diadisi ke atom karbon pada ujung sebelah kiri? Hasil reaksi yang terbentuk masih sama, yaitu 2-klorobutana.
Klorin akan terikat pada atom karbon setelah ujung rantai – molekul hanya terputar dimana hidrogen dan klorin menempati ujung yang berlainan.
Ada perbedaan untuk alkena yang tidak simetris – itulah sebabnya alkena yang tidak simetris ini akan dibahas secara terpisah.
Kondisi-kondisi
Senyawa-senyawa alkena bereaksi dengan hidrogen halida yang berwujud gas pada suhu kamar. Jika alkena juga merupakan sebuah gas, maka kedua gas tersebut bisa bercampur. Jika alkena berwujud cair, maka hidrogen halida bisa digelembungkan melalui alkena yang berwujud cair tersebut.
Senyawa-senyawa alkena juga akan bereaksi dengan larutan-larutan gas yang pekat dalam air. Larutan hidrogen klorida dalam air adalah asam hidroklorat. Larutan hidrogen bromida dalam air adalah asam hidrobromat – dan seterusnya.
Akan tetapi, reaksi-reaksi ini sedikit rumit. Air juga akan terlibat dalam reaksi dan hasil reaksi adalah campuran dari beberapa produk.
Laju reaksi
Variasi laju reaksi sesuai jenis halogen
Laju raksi akan meningkat sesuai dengan urutan HF – HCl – HBr – HI. Hidrogen fluoride bereaksi jauh lebih lambat dibanding HF, HBr dan HI, dan biasanya diabaikan ketika kita membahas tentang reaksi-reaksi ini.
Apabila halida-halida hidrogen bereaksi dengan senyawa-senyawa alkena, maka ikatan hidrogen-halogen harus terputus. Kekuatan ikatan akan menurun semakin ke bawah mulai dari HF sampai HI, dan ikatan hidrogen-fluorine cukup kuat. Karena ikatan antara hidrogen dan fluorine sulit diputus, maka adisi HF akan berlangsung lambat.
Variasi laju reaksi sesuai jenis alkena
Variasi ini berlaku baik bagi alkena tak-simetris maupun alkena simetris. Untuk memudahkan, berikut ini hanya diberikan contoh-contoh dari alkena simetris.
Laju reaksi meningkat seiring dengan bertambah kompleksnya molekul alkena, yakni bertambah besar dalam arti jumlah gugus alkil (seperti gugus metil) yang terikat pada atom karbon di kedua ujung ikatan rangkap.
Sebagai contoh:
Ada dua penjelasan untuk meningkatnya kereaktifan pada gambar di atas – kedua penjelasan ini memerlukan pengetahuan tentang mekanisme reaksi.
Alkena bereaksi karena elektron-elektron dalam ikatan pi menarik sesuatu yang memiliki muatan positif. Apapun yang dapat meningkatkan kepadatan elektron di sekitar ikatan rangkap akan membantu daya tarik elektron-elektron dalam ikatan pi tersebut.
Gugus-gugus alkil memiliki kecenderungan untuk "menekan" elektron-elektron agar menjauh darinya menuju ke ikatan rangkap. Semakin banyak gugus alkil, semakin negatif daerah di sekitar ikatan-ikatan rangkap tersebut.
Semakin bermuatan negatif daerah di sekitar ikatan rangkap, maka semakin kuat daya tariknya terhadap molekul-molekul seperti hidrogen klorida.
Meski demikian, alasan yang lebih penting tentang meningkatnya kereaktifan terletak pada kestabilan ion intermediet yang terbentuk selama reaksi berlangsung. Ketiga contoh yang diberikan pada gambar di atas menghasilkan ion-ion karbonium berikut (ion intermediet) pada tahap pertengahan reaksi:
Kestabilan ion-ion intermediet ini mempengaruhi energi aktivasi reaksi. Semakin kompleks alkena, energi aktivasi reaksi semakin berkurang. Ini berarti bahwa reaksi akan berlangsung lebih cepat.
Adisi pada alkena-alkena tidak simetris
Fakta-fakta
Dari segi kondisi-kondisi reaksi dan faktor-faktor yang mempengaruhi laju reaksi, tidak ada perbedaan antara alkena tak-simetris dengan alkena simetris yang telah dijelaskan di atas. Yang menjadi permasalahan pada alkena-alkena tidak simetris adalah orientasi adisi – dengan kata lain, atom karbon mana dari ikatan rangkap yang dimasuki oleh hidrogen dan halogen.
Orientasi adisi
Jika HCl diadisi pada alkena tidak simetris seperti propena, ada dua kemungkinan cara adisi yang bisa terjadi. Akan tetapi, biasaya hanya terdapat satu produk utama.
Ini sejalan dengan Kaidah Markovnikov yang mengatakan bahwa:
Apabila sebuah senyawa HX diadisi pada sebuah alkena tidak simetris, maka hidrogen akan terikat pada atom karbon yang sebelumnya memiliki paling banyak atom hidrogen.
Dalam hal ini, hidrogen terikat pada gugus CH2, karena gugus CH2 memiliki lebih banyak hidrogen dibanding gugus CH.
Perlu diperhatikan bahwa hanya hidrogen yang terikat langsung pada atom karbon ikatan rangkap yang dihitung. Hidrogen yang terdapat pada gugus CH3 tidak dianggap.
Pengecualian untuk hidrogen bromida
Berbeda dengan halida-halida hidrogen yang lain, hidrogen bromida bisa diadisi ke sebuah ikatan karbon-karbon rangkap baik pada ujung yang satu maupun pada ujung yang lain – tergantung pada kondisi-kondisi reaksi.
Adisi hidrogen bromida murni pada alkena murni
Apabila hidrogen bromida dan alkena sama-sama murni, hidrogen bromida akan masuk ke karbon ikatan rangkap menurut Kaidah Markovnikov. Sebagai contoh, dengan propena akan diperoleh 2-bromopropana.

Halida-halida hidrogen yang lain mengalami adisi dengan propena persis sama seperti mekanisme di atas.
Adisi hidrogen bromida yang mengandung peroksida organik pada alkena yang mengandung peroksida yang sama
Oksigen dari udara cenderung bereaksi lambat dengan alkena menghasilkan beberapa peroksida organik, sehingga dengan sendirinya akan terdapat beberapa peroksida organik dalam alkena. Dengan demikian, reaksi dengan oksigen ini adalah reaksi yang cenderung terjadi sebelum semua udara dikeluarkan dari sistem.
Apabila hidrogen bromida dan alkena sama-sama mengandung peroksida organik dalam jumlah kecil, maka reaksi adisi berlangsung dengan cara berbeda dan dihasilkan 1-bromopropana:

Reaksi ini terkadang disebut sebagai adisi anti-Markovnikov atau efek peroksida.
Peroksida-peroksida organik adalah sumber radikal bebas yang sangat potensial. Dengan adanya peroksida organik, hidrogen bromida akan bereaksi dengan alkena menggunakan mekanisme yang berbeda (lebih cepat). Karena berbagai faktor, reaksi ini tidak terjadi pada halida-halida hidrogen yang lain.
Reaksi ini juga bisa terjadi dengan mekanisme ini jika terdapat sinar ultraviolet dengan panjang gelombang yang tepat untuk memutus ikatan hidrogen-bromida menjadi hidrogen dan radikal bebas bromin.

Alkena

 

Alkena adalah hidrokarbon alifatik tak jenuh dengan satu ikatan rangkap -C=C-. Senyawa yang mempunyai dua ikatan rangkap disebut alkadiena, yang mempunyai tiga ikatan rangkap disebut alkatriena, dan seterusnya. Tiga suku terendah alkena antara lain etena, propena, butena. Rumus umum alkena : CnH2n. Seperti halnya penamaan alkena, pemberian nama IUPAC alkena juga perlu memperhatikan pemilihan rantai induk, penomoran, dan cara penulisan nama.

  1. Nama alkena diturunkan dari nama alkana yang sesuai (yang jumlah atom karbonnya sama) dengan mengganti akhiran ana menjadi ena.
  2. Rantai induk adalah rantai terpanjang yang mengandung ikatan rangkap.
  3. Penomoran dimulai dari salah satu ujung rantai induk sedemikian sehingga ikatan rangkap mendapat nomor terkecil.
  4. Posisi ikatan rangkap ditunjukkan dengan awalan angka, yaitu nomor dari atom karbon berikatan rangkap yang paling pinggir (nomor terkecil).
  5. Penulisan cabang-cabang sama seperti pada alkana yaitu:
  • ditulis di depan (mendahului nama rantai induk)
  • cabang-cabang sejenis digabung dan diberi awalan di, tri, dan seterusnya.
  • cabang-cabang yang berbeda ditulis dalam urutan sesuai urutan abjad

Reaksi-Reaksi Alkuna

Reaksi-reaksi alkuna mirip dengan alkena. Untuk menjenuhkan ikatan rangkapnya, alkuna membutuhkan pereaksi dua kali lebih banyak dibandingkan dengan alkena.

Reaksi-reaksi Alkena

Alkena lebih reaktif dibandingkan dengan alkena. Hal ini disebabkan adanya ikatan rangkap -C=C-. Reaksi alkena terutama terjadi pada ikatan rangkap itu. Reaksi penting alkena adalah pembakaran, adisi, dan polimerisasi.
  • Pembakaran
Seperti halnya alkana, alkena suku rendah mudah terbakar. Jika dibakar di udara terbuka, alkena menghasilkan jelaga lebih banyak daripada alkana. Hal itu terjadi karena alkena mempunyai kadar karbon lebih tinggi daripada alkana, sehingga pembakarannya menuntut lebih banyak oksigen. Pembakaran sempurna alkena menghasilkan gas CO2 dan uap air.
  • Adisi (penambahan=penjenuhan)
Reaksi terpenting dari alkena adalah reaksi adisi, yaitu penjenuhan ikatan rangkap.
  • Polimerisasi (penggabungan)
Alkena, khususnya yang sederhana, dapat mengalami polimerisasi, yaitu penggabungan antarmolekul membentuk molekul yang jauh lebih besar. Molekul sederhana yang mengalami polimerisasi itu disebut monomer, sedangkan hasilnya disebut polimer. Polimerisasi alkena terjadi berdasarkan reaksi adisi. Prosesnya dapat dianggap berlangsung sebagai berikut. Mula-mula ikatan rangkap terbuka, sehingga terbentuk gugus dengan dua elektron tak berpasangan. Elektron-elektron tak berpasangan tersebut kemudian membentuk ikatan antargugsus, sehingga membentuk rantai. Contoh zat yang merupakan polimer alkena yaitu plastik dan karet. Plastik yang sering kita gunakan sebagai pembungkus atau sampul buku merupakan polimer dari etena, tali plastik dan botol kemasan air mineral merupakan polimer dari propena.

Order Reaksi dan Mekanisme Reaksi

Halaman ini menitikberatkan pada hubungan antara order reaksi dan mekanisme dalam beberapa kasus sederhana. Halaman ini menyelidiki apa itu mekanisme, dan konsep tentang langkah penentuan laju reaksi. Halaman ini juga menjelaskan perbedaan antara beberapa istilah yang membingungkan antara “order reaksi” dan “molekularitas reaksi”.
Mekanisme Reaksi
Apa itu mekanisme reaksi?
Dalam perubahaan kimia, beberapa ikatan-ikatan diceraikan dan ikatan-ikatan baru dibentuj. Tidak jarang, perubahan-perubahaan ini begitu rumit untuk dilangsungkan dalam satu langkah sederhana. Melainkan, reaksi sering berlangsung dalam beberapa tahap perubahaan-perubahaan kecil.
Mekanisme reaksi menjelaskan satu atau lebih langkah yang terjadi di reaksi sehingga mampu menggambarkan bagaimana beberapa ikatan tercerai dan terbentuk. Contoh-contoh berikut ini berdasar dari kimia organik yang mudah dimengerti walaupun misalnya Anda tidak terbiasa dengannya.
Reaksi dibawah ini merupakan reaksi 2-bromo-2-metilpropan dengan ion hidroksi dari larutan natrium hidroksi.

Reaksi keseluruhan adalah pergantian atom brom dalam senyawa organik dengan gugus OH.
Hal pertama yang terjadi ialah ikatan karbon-brom dalam komposisi sedikit bercerai menjadi ion-ion:

Ikatan karbon-brom cukup kuat, sehingga reaksi ini berlangsung lambat. Jika ion-ion inti bertumbukan satu dengan yang lainnya, ikatan kovalen akan terbentuk kembali. Tanda anak panah dalam persamaan menunjukkan perpindahan dari sepasang elektron.
Jika terdapat ion hidroksi dalam konsentrasi pekat, ion positif akan memiliki kemungkinan tinggi untuk ditumbuk oleh ion-ion hidroksi. Langkah keseluruhan reaksi akan berlangsung cepat. Ikatan kovalen baru akan dibentuk antara karbon dan oksigen, menggunakan satu dari sepasang elektron kosong dari atom oksigen.

Karena ikatan karbon-oksigen kuat, sekali gugus OH berdempet dengan atom karbon, mereka akan cenderung untuk terus berdempet.
Mekanisme menunjukkan reaksi berlangsung dalam dua langkah dan mengdeskripsikan secara jelas bagaimana langkah-langkah itu berlangsung dalam ikatan-ikatan yang tercerai dan terbentuk. Mekanisme juga menggambarkan bahwa langkah-langkah laju reaksi berbeda -satu lambat dan satunya cepat.
Langkah penentuan laju reaksi
Laju reaksi keseluruhan (dimana pengukurannya diperlukan beberapa eksperimen) dikontrol oleh laju reaksi yang paling lambat. Dalam contoh diatas, ion hidroksi tidak dapat berinteraksi dengan ion positif sampai ion positif terbentuk. Lankah kedua dapat diandaikan dengan reaksi yang menunggu langkah laju reaksi pertama terbentuk.
Langkah reaksi lambat ini disebut juga dengan langkah penentuan laju reaksi.
Sepanjang terdapat beberapa macam laju yang berbeda dari langkah-langkah, ketika kita mengukur laju suatu reaksi, sebenarnya kita mengukur langkah penentuan laju reaksi.
Mekanisme reaksi dan order reaksi
Contoh-contoh yang kita gunakan pada halaman ini merupakan contoh yang sederhana dimana reaksi berlangsung dalam order 0, 1 atau 2. Dimana langkah reaksi lambat berlangsung sebelum langkah-langkah reaksi cepat lainnya.
Contoh 1
Mekanisme dibawah ini merupakan mekanisme yang telah kita bahas. Bagaimana kita tahu mekanisme berlangsung seperti ini?


Dengan melakukan eksperimen laju reaksi, kita dapat menemukan persamaan laju sebagai berikut :

Reaksi ini berorder satu terhadap senyawa organik dan beroder nol terhadap ion hidrokis. Konsentrasi dari ion hidroksi tidak mempengaruhi laju reaksi keseluruhan.
Bila ion hidroksi mengambil bagian dalam langkah reaksi lambat, peningkatan dari konsentrasi akan mempercepat reaksi. Namun peningkatan konsentrasi ini tidak memiliki perubahaan yang berarti, sehingga konsentrasi ion hidroksi berada dalam bagian langkah reaksi cepat.
Peningkatan konsentrasi ion hidroksi akan mempercepat langkah reaksi cepat, tetapi hal ini tidaklah memberikan pengaruh yang berarti pada laju reaksi keseluruhan. Dimana reaksi keseluruhan ditentukan oleh cepatnya laju reaksi lambat.
Dalam kasus sederhana seperti ini, dimana langkah reaksi lambat merupakan langkah pertama, persamaan laju memberitahukan apa saja yang mengambil bagian dalam laju reaksi lambat. Dalam kasus ini, reaksi berorder satu terhadap senyawa organik.
Hal ini memberikan gambaran terhadap kita bagaimana menentukan kemungkinan mekanisme. Apabila kita ingin menentukan suatu mekanisme, kita perlu mencari lebih banyak bukti-bukti untuk memastikannya. Sebagai contoh, dalam kasus ini kita perlu mendeteksi keberadaan ion positif yang dibentuk pada langkah pertama.
Contoh 2
Sekilas reaksi di bawah ini tampak mirip dengan reaksi di atas. Atom brom digantikan dengan gugus OH pada senyawa organik.

Walaupun begitu, persamaan laju dari reaksi yang terlihat mirip ini cukup berbeda. Dimana mekanisme reaksinya berlainan.

Reaksi ini berorder satu terhadap senyawa organik maupun ion hidroksi. Kedua darinya haruslah mengambil bagian dalam langkah laju reaksi lambat. Reaksi haruslah berlangsung dalam keadaan tumbukan langsung diantara mereka.

Atom karbon yang ditumbuk oleh ion hidroksi memiliki muatan positif dan atom brom memiliki muatan negatif yang dikarenakan oleh perbedaan elektronegatifas diantaranya.
Ketika ion hidroksi mendekat, brom akan tertolak dalam suatu langkah yang mulus.
Molekularitas reaksi
Jika kita mengetahui mekanisme dari suatu reaksi, kita dapat menuliskan persamaan dari suatu rangkaian langkah-langkah yang membentuk reaksi tersebut. Tiap langkah-langkah tersebut memiliki molekularitas.
Molekularitas dari sebuat langkah dapat ditentukan dengan menghitung jumlah dari partikel (molekul, ion , atom atau radikal bebas) yang terlibat dalam langkah tersebut. Sebagai contoh, mari kita lihat mekanisme yang telah kita bahas sebelumnnya:

Langkah ini melibatkan satu molekul yang tercerai menjadi ion-ion. Karena hanya ada satu jenis partikel yang terlibat didalam reaksi, maka reaksi ini memiliki molekularitas 1. Ini dapat dideskripsikan sebagai reaksi unimolekular.

Langkah kedua dari mekanisme melibatkan dua ion yang berinteraksi bersama.

Langkah ini memiliki molekularitas 2 atau disebut juga dengan reaksi bimolekular.
Reaksi lainnya yang telah kita bahas terjadi dalam satu langkah yaitu :

Karena dua jenis partikel terlibat (satu molekul dan satu ion), reaksi ini juga merupakan reaksi bimolekular.
Kecuali reaksi keseluruhan yang terjadi dalam satu langka (seperti reaksi terakhir diatas), kita tidak dapat menentukan molekularitasnya. Kita perlu mengetahui mekanisme dan tiap-tiap langkah reaksi memilki molekuralitasnya sendiri.
Satu hal yang perlu diingat dan sering sekali kita dibingungkan adalah konsep molekularitas tidak sama dengan dengan konsep order reaksi